Observing Customer Segment Stability Using Soft Computing Techniques and Markov Chains within Data Mining Framework
نویسنده
چکیده
This study proposes a model that utilizes soft computing and Markov Chains within a data mining framework to observe the stability of customer segments. The segmentation process in this study includes clustering of existing consumers and classification-prediction of segments for existing and new customers. Both a combination and an integration of soft computing techniques were used in the proposed model. Segmenting customers was done according to the purchasing behaviours of customers based on RFM (Recency, Frequency, Monetary) values. The model was applied to real-world data that were procured from a UK retail chain covering four periods of shopping transactions of around 300,000 customers. Internal validity was measured by two different clustering validity indices and a classification accuracy test. Some meaningful information associated with segment stability was extracted to provide practitioners a better understanding of segment stability over time and useful managerial implications. Observing Customer Segment Stability Using Soft Computing Techniques and Markov Chains within Data Mining Framework
منابع مشابه
Customer Behavior Mining Framework (CBMF) using clustering and classification techniques
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...
متن کاملA New Model to Speculate CLV Based on Markov Chain Model
The present study attempts to establish a new framework to speculate customer lifetime value by a stochastic approach. In this research the customer lifetime value is considered as combination of customer’s present and future value. At first step of our desired model, it is essential to define customer groups based on their behavior similarities, and in second step a mechanism to count current ...
متن کاملUtilization of Soft Computing for Evaluating the Performance of Stone Sawing Machines, Iranian Quarries
The escalating construction industry has led to a drastic increase in the dimension stone demand in the construction, mining and industry sectors. Assessment and investigation of mining projects and stone processing plants such as sawing machines is necessary to manage and respond to the sawing performance; hence, the soft computing techniques were considered as a challenging task due to stocha...
متن کاملApplication of non-linear regression and soft computing techniques for modeling process of pollutant adsorption from industrial wastewaters
The process of pollutant adsorption from industrial wastewaters is a multivariate problem. This process is affected by many factors including the contact time (T), pH, adsorbent weight (m), and solution concentration (ppm). The main target of this work is to model and evaluate the process of pollutant adsorption from industrial wastewaters using the non-linear multivariate regression and intell...
متن کاملIntegrating AHP and data mining for effective retailer segmentation based on retailer lifetime value
Data mining techniques have been used widely in the area of customer relationship management (CRM). In this study, we have applied data mining techniques to address a problem in business-to-business (B2B) setting. In a manufacturer-retailer-consumer chain, a manufacturer should improve its relationship with retailers to continue its business. Segmentation is a useful tool for identifying groups...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJISSC
دوره 6 شماره
صفحات -
تاریخ انتشار 2015